Page: 1 of 5
DATE: February 7, 2008
TIME: 70 minutes
COURSE: MATH 2130

NAME: \qquad

STUDENT \# : \qquad

There are 6 questions of total mark 50 .
[10] 1. Find the distance between the point $P(1,-1,2)$ and the line $x=2+t, \quad y=3 t, \quad z=1-t$.

Page: 2 of 5
DATE: February 7, 2008
TIME: 70 minutes
COURSE: MATH 2130
EXAMINER: G.I. Moghaddam
[6] 2. Identify and draw the surface with the equation

$$
x^{2}+z^{2}-2 x-2 z+y+4=0 .
$$

[6] 3. Find a parametric representation for the curve $x^{2}+y+z=2$ and $x y+z=1$.

Page: 3 of 5
DATE: February 7, 2008
TIME: 70 minutes
COURSE: MATH 2130
EXAMINER: G.I. Moghaddam
[10] 4. Given the plane $\Pi: 2 x+2 y+z=-22$ and the line $\ell: \quad x=1+2 t, \quad y=-3+t, \quad z=4+5 t$.
[5] (a) Find a possible intersection point of the line ℓ with the plane Π.(if any)
[5] (b) Find a simplified equation of the plane through the point $P(1,1,1)$ which is parallel to the line ℓ and perpendicular to the plane П.

Page: 4 of 5
DATE: February 7, 2008
TIME: 70 minutes
COURSE: MATH 2130
EXAMINER: G.I. Moghaddam
[10] 5 . Given the curve C with vector representation

$$
C: \quad \mathbf{r}(t)=e^{-t} \sin t \hat{\mathbf{i}}+2 \hat{\mathbf{j}}+e^{-t} \cos t \hat{\mathbf{k}}
$$

[5] (a) Find a unit tangent vector to the curve C at the point $(0,2,1)$.
[5] (b) Find the arc length of the curve C between the two points $(0,2,1)$ and $\left(0,2, e^{-2 \pi}\right)$.

Page: 5 of 5
DATE: February 7, 2008
TIME: 70 minutes
[8] 6. Given the vector functions $\mathbf{u}=-2 t \hat{\mathbf{i}}+t^{2} \hat{\mathbf{j}}-t \hat{\mathbf{k}}$ and $\mathbf{v}=t \hat{\mathbf{i}}+\frac{1}{t} \hat{\mathbf{j}}+\hat{\mathbf{k}}$ and the real-valued function $f(t)=-3 t$, evaluate

$$
\int(f \mathbf{u} \times \mathbf{v})
$$

